

Data Center – Layer 3 Underlay Architectures

- For scale and control evolution to Layer 3 architecture
 - Routed traffic at the top of the rack
 - Utilize proven and trusted standard Layer 3 protocols
 - Mature Open standards for interoperability
 - Minimize the size of the Layer 2 domain
 - Reducing the size of the fault & broadcast domains
 - Standard scalable model

Utilize tried and proven protocols and management tools

DC IP Fabric – Equal Cost MultiPathing (ECMP)

- Each leaf node has multiple paths of equal "cost" to each Spine
 - ECMP used to load balance flows across the multiple spine node
 - For each prefix, routing table has next-hop (path) to each spine
 - Load-balancing algorithm is configurable based on L3/L4 info for granularity
 - Seed hash support to avoid polarization, but not required in a two tier design

ECMP Load-balancing across all active paths

Flow based load-balancing across the active paths

Data Center – Layer 3 Overlay Architectures

- Virtual eXtensible LAN (VXLAN)
 - Filed as RFC7348
 - Framework co-authored by Arista, Broadcom, Cisco, Citrix, Red Hat, VMware
 - Enables Layer 2 interconnection across Layer 3 boundaries
 - Transparent to the physical IP network
 - Provides Layer 2 scale across the Layer 3 IP fabric
 - Abstracts the Virtual connectivity from the physical IP infrastructure

Introducing VXLAN

- Layer 2 "Overlay Networks" on top of a Layer 3 network
 - "MAC in IP" Encapsulation
 - Layer 2 multi-point tunneling over IP UDP
 - Transparent to the physical IP underlay network
 - Provides Layer 2 scale across the Layer 3 IP fabric

VXLAN Terminology

Virtual Tunnel End-point (VTEP)

- Entry point for connecting nodes into the VXLAN overlay network
- Responsible for the encap/decap with the appropriate VXLAN header

VXLAN Terminology

Virtual Tunnel Identifier (VTI)

- An IP interface used as the Source IP address for the encapsulated VXLAN traffic
- IP address residing in the underlay network

VXLAN Terminology

Virtual Network Identifier (VNI)

- A 24-bit field added within the VXLAN header.
- Identifies the Layer 2 segment of the encapsulated Ethernet frame

VXLAN Terminology - VLAN service interfaces

VLAN to VNI mapping

- One to One mapping between VLAN ID and the VNI
- Mapping is only locally significant
- VLAN ID not carried on VXLAN encap frame
- Allows VLAN translation between remote VTEPs

VXLAN Terminology - VLAN service interfaces

Port + VLAN to VNI mapping

- Mapping traffic to a VNI based on a combination of the ingress port and it VLAN-ID
- The VLAN ID is not carried on VXLAN encap frame
- Provides support for overlapping VLANs within a single VTEP to be mapped to different VNIs

VXLAN Terminology - VLAN service interfaces

S-VLAN to VNI mapping

- Mapping of the outer S-Tag to a single VNI
- Inner C-Tags are transported within a single VNI
- The inner VLAN ID are carried on VXLAN encap frame
- Ability to transport all customer VLANs across a single VXLAN point to point link

VXLAN Encapsulated Frame Format

- Ethernet header uses local VTEP MAC and default router MAC (14 bytes plus 4 optional 802.1Q header)
- The VXLAN encapsulation source/destination IP addresses are those of local/remote VTI (20 bytes)

VXLAN Encapsulated Frame Format

- UDP header, with SRC port hash of the inner Ethernets header, destination port IANA defined (8 bytes)
 - Allows for ECMP load-balancing across the network core which is VXLAN unaware.
- 24-bit VNI to scale up to 16 million for the Layer 2 domain/ vWires (8 bytes)

VXLAN Encapsulated Frame Format

- To provide Entropy across a multi-path ECMP underlay network
 - UDP source port created from a hash of the inner frame
 - What fields are hashed from the inner is not defined in the standard
 - Silicon vendor will define the level of Entropy that can be achieved
 - UDP destination port predefined in the RFC as 4789

VXLAN Control Plane Options

- The VXLAN control plane is used for MAC learning and packet flooding
 - Learning what remote VTEP a host resides behind
 - Allowing the mapping of remote MACs to their associated remote VTEP
 - Mechanism for forwarding of the Broadcast and multicast traffic within the Layer 2 segment (VNI)

Controller Model

- State learning driven by third-party controller
- OVSDB or OpenStack ML2 plugin for orchestration
- Data Center virtualization and Orchestration focus

IP Multicast Control Plane

- VTEP join an associated IP multicast group(s) for the VNI(s)
- Unknown unicasts forwarded to VTEPs in the VNIs via IP multicast
- Flood and learn and requires IP multicast support in the underlay
- Limited deployments

Head-End Replication (HER)

- BUM traffic replicated to each remote VTEPs in the VNIs
- Unicast Replication carried out on the ingress VTEP
- MAC learning still via flood and learn, but no requirement for IP multicast

EVPN Model

- •BGP used to distribute local MAC to IP bindings between VTFPs
- Broadcast traffic handled via IP multicast or HER models
- Dynamic MAC distribution and VNI learning, configuration can be BGP intensive

Questions?

Thank You For Your Attention

Florian Hibler Systems Engineer Arista Networks, Inc. (e) florian@arista.com (m) +49 171 7576089 (w) http://www.arista.com

Questions?

Thank You For Your Attention

Florian Hibler Systems Engineer Arista Networks, Inc. (e) florian@arista.com (m) +49 171 7576089 (w) http://www.arista.com

DC IP Fabric – Equal Cost MultiPathing (ECMP)

- Resilient ECMP, minimize flow disruption during a failure
 - With 4-way ECMP, loss of a single node/link only reduces bandwidth by 25%
 - Resilient ECMP ensures only traffic traversing the failed path is re-distributed.
 - Flows on the remaining active paths are not re-distributed, thus unaffected by the outage


```
ip hardware fib ecmp capacity 4 redundancy 2
```

```
next-hop table
                                   New next-hop table
1-11.0.1.2 -Fail
                                   1- 11.0.2.2 - NEW
                                   2- 11.0.2.2 - no change
2-11.0.2.2
<del>3</del>- 11.0.3.2
                                   3- 11.0.3.2 - no change
                                   4- 11.0.4.2 - no change
4- 11.0.4.2
 <del>-11.0.1.2</del> -Fail
                                  5- 11.0.3.2 - NEW
6- 11.0.2.2
                                   6- 11.0.2.2 - no change
7- 11.0.3.2
                                   7- 11.0.1.2 - no change
8- 11.0.4.2
                                   8- 11.0.2.2 - no change
```

ECMP with four unique next-hop with 1+1 redundancy giving a total of 8 next-hops

ARISTA

Number of

Next-hop (N)

remains the same

regardless of the

number active

next-hops

DC IP Fabric - iBGP vs eBGP

eBGP between Nodes

- Route reflector design not required
- Easy to determine the source of BGP paths in the RIB
- Paths can be advertised from one eBGP peer to another

DC IP Fabric - Graceful Maintenance

Seamless automated Spine Upgrade with Open Standards

- Gracefully drain the traffic away from the switch, via BGP route maps and GSHUT communities
- Upgrade switch with no code dependency concern
- Reinsert switch into forwarding and gracefully start forwarding traffic

BGP UCMP

```
!
router bgp 64515
router-id 1.1.1.7
maximum-paths 64 ecmp 64
ucmp mode 1 128 0.01
neighbor 1.1.1.40 peer-group 64512
neighbor 1.1.1.40 link-bandwidth default 10G
neighbor 1.1.1.42 peer-group 64512
neighbor 1.1.1.42 link-bandwidth default 100G
--More--
```


BGP UCMP

```
veos3b(config)#sh ip bgp 1.1.1.111
...
BGP routing table entry for 1.1.1.1/32
Paths: 2 available
64512 64513
    1.1.1.42 from 1.1.1.42 (1.1.1.5)
    Origin IGP, metric 0, localpref 100, weight 0, valid, external, ECMP head, ECMP, UCMP, best, ECMP contributor Community: 64513:1
    Extended Community: Link-Bandwidth-AS:64512:12499999744.000000(Bps)
    Rx SAFI: Unicast
64512 64513
    1.1.1.40 from 1.1.1.40 (1.1.1.4)
    Origin IGP, metric 0, localpref 100, weight 0, valid, external, ECMP, UCMP, ECMP contributor Community: 64513:1
    Extended Community: Link-Bandwidth-AS:64512:1250000000.000000(Bps)
    Rx SAFI: Unicast
...
```


BGP UCMP

VXLAN Control Plane - HER

- Head-end Replication operation
 - Each VTEP is configured with an IP address "flood list" of the remote VTEPs within the VNI
 - Any Broadcast/Multicast or Unknown traffic is then replicated to the configured VTEPs in the list
 - Remote VTEPs receiving the flooded traffic learn inner source MAC from the received frame
 - Creating a remote MAC to outer SRC IP (VTEP) mapping for the entry

Flood list requires provisioning, MAC learning via flood and learn

MAC Security

- Finite set of MAC addresses permitted per edge port
- L2 Access Control List (ACL) restrict traffic from approved members

```
interface Ethernet3
  description member-A
  switchport access vlan 5
  mac access-group member-A in
```

- Could automatically-generate policy from a database (e.g. IXP-Manager)
- N.B. VXLAN does not change any of this!

Broadcast Control (ARPs, etc.)

- L2 ACLs already limit traffic to only approved speakers
- Storm-control to Broadcast (ARP), Multicast (v6ND)

```
interface Ethernet3
  storm-control broadcast level pps 5000
  storm-control multicast level pps 5000
```

- Statistics can be retrieved via APIs, etc. for automated behaviours
- EVPN provides support for snooping and suppression (see later slides)

VXLAN Control Plane - HER, simple config

What is Ethernet VPN?

- EVPN, MP-BGP control-plane for delivering L2 and L3 VPN services with VXLAN
 - Evolution from the flood-learn mechanism of traditional L2 VPN (VPLS) service
 - Abstracts the (MP-BGP) control-plane from the (VXLAN/MPLS/PBB) forwarding plane
 - MP-BGP control plane to advertise host MAC and IP addresses and prefixes
 - Allows within a single MP-BGP control, L2 VPNs (hosts addresses) and L3 VPNs (IP prefixes).
- Potential use cases
 - Network virtualisation (overlay) services for stretching Layer 2 connectivity
 - Integration of Layer 2 and Layer 3 VPN services in the overlay
 - Data Center Interconnect (DCI)

What is Ethernet VPN (EVPN) - Standard body for EVPN

- EVPN Standard RFC 7432
 - Specifics an BGP EVPN control plane with a MPLS data plane
 - BGP control plane, new address family to advertise MAC/IP and IP prefixes.
 - Previously known as draft-ietf-l2vpn-evpn
 - Multi-vendor authors involving vendors and operators: ALU, Cisco, Juniper, AT&T, Bloomberg and Verizon
- Proposal for EVPN with NVO Network Virtualisation Overlay
 - Same EVPN control plane with a VXLAN Data plane (NGRE, MPLSoGRE)
 - Draft-ietf-bess-evpn-overlay

For the EVPN Data Plane, currently 1 standard (MPLS) and 2 proposals (NVO and PBB)

What is Ethernet VPN (EVPN) -- Standard body for EVPN

- Standards and Draft documents
 - RFC 7432 BGP MPLS-Based Ethernet VPNs.
 - https://tools.ietf.org/html/rfc7432
 - Network Virtualisation Overlay solutions using EVPN VXLAN/NVGRE forwarding model
 - https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04
 - Integrated Routing and Bridging within EVPN
 - » https://www.ietf.org/archive/id/draft-sajassi-l2vpn-evpn-inter-subnet-forwarding-05.txt
 - IP prefix advertisement in EVPN
 - https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-02

EVPN Operation

- EVPN is built on Multi Protocol BGP
 - Introduction of a new EVPN address family
 - Address Family Identifier 25 (Layer 2 VPN) subsequent AFI 70 (EVPN)
 - Advertisement of host MAC/IP binding and IP prefixes
 - Distribution of Layer 2/3 information allows support for integrated bridging and routing in VXLAN overlay networks.
 - Utilises Layer 3 VPN concepts of Route-distinguishers and Route Targets
 - Providing support for multi-tenant VXLAN overlays
 - Support for over-lapping IP address spaces between tenants
 - Multiple tenant's NLRI information carried within a single shared BGP session,

EVPN Operation – Route Types

- The new EVPN NLRI defines five route types
 - Not all route type are mandatory, specific support will be based on the vendors implementation
 - Next hop (VTEP IP address) for the route is contained in the MP_REACH_NLRI path attribute

EVPN Operation – Type 2 routes (MAC learning, mobility and ARP suppression)

- Flow based MAC learning on the local interfaces of VTEP
 - Locally learnt MACs advertised to BGP peers via EVPN route update
 - Next-hop of the route advertisement set to the IP of the advertising NVE (VTEP) and sequence number for mobility
 - Advertised label in the update, VNI of the MAC-VRF/ L2 domain of the learnt MAC address.
- EVPN Type 2 (MAC route) used to advertise the MAC address
 - MAC and IP [optional] address advertised within the type 2 route
 - Host IP address advertisement can be used for ARP suppression, to reduce flooding in the VNI
 - Arista phase 1 implementation, only MAC addresses are advertised

EVPN Operation – Type 2 route (IP snooping + ARP Suppression)

- Mac Address advertisement can optionally carry the IP address
 - IP to MAC binding learnt via ARP/DHCP snooping on the local VTEP
 - Advertisement of the IP to MAC binding via BGP to remote VTEPs
 - ARP proxy on the remote VTEP to reduce the flooding in the VNI
- EVPN Type 2 (MAC route) used to advertise the [Optional] IP address
 - Can be advertised in a separate update to avoid removal after ARP timeout
 - Arista phase 1 implementation, only MAC address are advertised.

EVPN Operation – Type 3 routes (Ingress replication)

- BUM traffic handled via ingress replication
 - VTEP replicates BUM traffic to each VTEP in the same VNI
 - Each VTEP nodes advertises their local VNI membership status
 - Flood-list of the VTEP dynamically populated based on the advertisement
- <u>EVPN Type 3 (IMET Route)</u> used to advertise EVI/VNI membership
 - Arista implementation will utilize ingress replication (HER), supporting Type 3 routes
 - Multicast forwarding model is an option, not supported in Arista implementation

EVPN Operation – Type 1 and 4 routes (Multi-homing)

- EVPN provides support for Multi-homing hosts and CPE nodes
 - Dual-homing end nodes/hosts to multiple VTEP nodes
 - Support for active-active and active-standby forwarding model plus multi-node solutions
 - VTEP nodes in the model operate independently, they're not interconnected via a "peer" link
- Arista implementation, will utilize MLAG for multi-homing
 - Support for interoperating with third-party EVPN multi-homing models
 - EVPN multi-homing utilises type 1 and 4 routes

